Functional presynaptic HCN channels in the rat globus pallidus.

نویسندگان

  • Justin Boyes
  • J Paul Bolam
  • Ryuichi Shigemoto
  • Ian M Stanford
چکیده

Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are expressed postsynaptically in the rodent globus pallidus (GP), where they play several important roles in controlling GP neuronal activity. To further elucidate the role of HCN channels in the GP, immunocytochemical and electrophysiological approaches were used to test the hypothesis that HCN channels are also expressed presynaptically on the local axon collaterals of GP neurons. At the electron microscopic level, immunoperoxidase labelling for HCN1 and HCN2 was localized in GP somata and dendritic processes, myelinated and unmyelinated axons, and axon terminals. One population of labelled terminals formed symmetric synapses with somata and proximal dendrites and were immunoreactive for parvalbumin, consistent with the axon collaterals of GABAergic GP projection neurons. In addition, labelling for HCN2 and, to a lesser degree, HCN1 was observed in axon terminals that formed asymmetric synapses and were immunoreactive for the vesicular glutamate transporter 2. Immunogold labelling demonstrated that HCN1 and HCN2 were located predominantly at extrasynaptic sites along the plasma membrane of both types of terminal. To determine the function of presynaptic HCN channels in the GP, we performed whole-cell recordings from GP neurons in vitro. Bath application of the HCN channel blocker ZD7288 resulted in an increase in the frequency of mIPSCs but had no effect on their amplitude, implying that HCN channels tonically regulate the release of GABA. Their presence, and predicted role in modulating transmitter release, represents a hitherto unidentified mechanism whereby HCN channels influence the activity of GP neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons.

The globus pallidus (GP) is a critical component of the basal ganglia circuitry controlling motor behavior. Dysregulation of GP activity has been implicated in a number of psychomotor disorders, including Parkinson's disease (PD), in which a cardinal feature of the pathophysiology is an alteration in the pattern and synchrony of discharge in GP neurons. Yet the determinants of this activity in ...

متن کامل

Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus.

The activity patterns of subthalamic nucleus (STN) neurons are intimately linked to motor function and dysfunction and arise through the complex interaction of intrinsic properties and inhibitory and excitatory synaptic inputs. In many neurons, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play key roles in intrinsic excitability and synaptic integration both under normal c...

متن کامل

Subcellular localization of GABAB receptor subunits in rat globus pallidus.

The inhibitory amino acid gamma-aminobutyric acid (GABA) is the major neurotransmitter in the globus pallidus. Although electrophysiological studies have indicated that functional GABA(B) receptors exist in rat globus pallidus, the subcellular localization of GABA(B) receptor subunits and their spatial relationship to glutamatergic and GABAergic synapses are unknown. Here, we use pre-embedding ...

متن کامل

GABAergic neurotransmission in globus pallidus and its involvement in neurologic disorders.

The globus pallidus occupies a critical position in the 'indirect' pathway of the basal ganglia and, as such, plays an important role in the modulation of movement. In recent years, the importance of the globus pallidus in the normal and malfunctioned basal ganglia is emerging. However, the function and operation of various transmitter systems in this nucleus are largely unknown. GABA is the ma...

متن کامل

Functional connectome of the striatal medium spiny neuron.

Dopamine system disorders ranging from movement disorders to addiction and schizophrenia involve striatal medium spiny neurons (MSNs), yet their functional connectivity has been difficult to determine comprehensively. We generated a mouse with conditional channelrhodopsin-2 expression restricted to medium spiny neurons and assessed the specificity and strength of their intrinsic connections in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2007